
Architectural Support for Copy and Tamper Resistant
Software

David Lie Chandramohan Thekkatli Mark Mitchell Patrick Lincoln
Dan Boneh John Mitchell Mark Horowitz

Computer Systems Laboratory
Stanford University
Stanford CA 94305

t

ABSTRACT
Although there have been attempts to develop code trans-
formations that yield tamper-resistant software, no reliable
software-only methods Jire known. This paper studies the
hardware implementation of a form of execute-only mem-
ory (XOM) that allows instructions stored in memory to
be executed but not otherwise manipulated. To support
XOM code we use a machine that supports internal comp-
artments—a process in one compartment cannot read data
firom another compartment. All data that leaves the ma-
chine is encrypted, since we assume external memory is not
secure. The design of this machine poses some interesting
trade-offs between security, efficiency, and flexibiUty. We
explore some of the potential security issues as one push-
es the machine to become more efficient and flexible. Al-
though security carries a performance penalty, our analysis
indicates that it is possible to create a normal multi-tcisking
max;hine where nearly all applications can be run in XOM
mode. While a virtual XOM machine is possible, the un-
derlying hardware needs to support a unique private key,
private memory, and traps on cache misses. For efficient op-
eration, hardware assist to provide fcist symmetric ciphers is
also required.

1. INTRODUCTION
Software piracy is a significant economic problem. The

Business Software Alliance, for example, estimates that pira-
cy cost the software industry 11 billion dollars in 1998 [1].
In addition to legislative and law enforcement efforts, it
appears useful to develop technical methods for combat-
ing software piracy. In principle, a software vendor might
like to sell a single copy to a single user. However, it is
generally easy to copy and distribute digital information.

Compaq Systems Research Center

TSUI international

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASPWS-IX 2000 Cambridge, Massachusetts USA
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

While software watermarking might aid in prosecuting pi-
rates once they are detected, methods aimed at identifying
copies will not prevent copying itself. We therefore investi-
gate a method for preventing unauthorized execution of soft-
ware, regardless of the number of copies made. Our method
also prevents any software customer from examining the ex-
ecutable code itself, thereby protecting the algorithms and
computational methods incorporated into the code. ,

The protection model studied in this paper is called
"XOM", pronounced "zom", an acronym for eXecute-Only
Memory. The mechanism, also described in [4] and relat-
ed to concepts presented in [2, 9, 10, 11], is based on the
idea that code stored on disk or other media can be msirked
"execute-only." Execute-only code, which is stored in an
encrypted form, can only be decrypted by the instruction-
loading path on the main processor chip, thereby preventing
any user of the computer from examining the actual instruc-
tions. This simple idea requires additional mechanisms in
order to preserve code security. In particular, data written
during execution must be encrypted, in order to prevent an
adversary from reverse-engineering the code. This is espe-
cially tricky for data stored in registers that are accessible
to the operating system after an interrupt, since encrypting
every write to a register and decrypting every read from a
resister is prohibitively slow. In addition, merely encrypt-
ing data may not prevent sophisticated attacks that involve
permuting the contents of encrypted data locations.

The aim of this paper is to establish that hardware im-
plementation of a XOM-like execution model is feasible in
practice. To support a secure execution environment, we
use a form of compartment to isolate independent software
applications running on the same processor [23]. Each com-
partment is built from a session key, used to encrypt the
associated data. Regular unencrypted code can run in the
unprotected or null compartment that has no key associated
with it.

Protection is provided using a combination of public-key
and symmetric-key cryptography [19]. In brief, each XOM
chip contains the private decryption key of a pubUc-key en-
cryption pair. The corresponding encryption key is made
public, so that anyone can encrypt code for this chip but
only the chip itself contains the key required for decryption.
However, if the entire instruction stream of a XOM appli-
cation were encrypted using pubUc-key cryptography (such
as RSA [19]), instruction loading would be prohibitively
slow. Therefore, the header block of each XOM applica-

20040130 103

tion contains the encryption key of some faster, symmetric
key encryption scheme (such as DES [20]) and the remainder
of the application is encrypted with this key. Since each ap-
pHcation will have a distinct symmetric key, the symmetric
key embedded in an application can be used as the identifier
for the compartment in which the code is executed.

The next section of the paper (Section 2) describes the ab-
stract XOM machine architecture in more detail, explaining
how the machine internally protects information in compart-
ments. We begin with a description of a basic machine that
does not use main memory and does not take interrupts.
We then extend this model to support both of those.

Section 3 looks at some of the security issues with XOM,
and addresses various ways that information might leak out
of the compartments that we have constructed. Our securi-
ty model does not trust external memory or the operating
system that manages the execution of the XOM program.
Providing guarantees in such a model is a particularly chal-
lenging problem.

Section 4 describes possible implementations of a XOM
processor. We abstract many functions into a XOM Virtual
Machine Monitor that could be implemented in microcode
or software. Section 5 discusses hardware necessary to make
the performance of XOM reasonable and Section 6 evaluates
the overhead of this hardware. Finally, we close the paper
with a summary of the XOM architecture in Section 7.

2. THE ABSTRACT MACHINE
The abstract XOM machine has three principal tasks: de-

coding the session key using an asymmetric cipher, decoding
the instruction stream from external memory using the ses-
sion key, and providing compartmentalized storage for the
XOM code to use. The most interesting task is providing
this storage, so we wU begin with that problem.

Our basic approach to secure storage is to tag all data
with a XOM identifier. This identifier is shorthand for a
session key and is an index into a table, called the session
key table, that maps XOM identifiers to a decrypted sassion
key. Programs that run in the clear without encrypting their
code belong, by default, to the null principal, and have a
XOM identifier of zero.

The size of the session key table and tags depend on the
number of concurrently executing principals that can have
data in the machine. In the simplest machine, the identifier
can be one bit and the table contains only two entries: the
session key of the currently active XOM program, and the
null session.

At any time, only one principal is executing and thus, on-
ly one XOM identifier is active. We refer to this principal
as the "active principal". The session key and the corre-
sponding XOM identifier belonging to the active principal
are called the "active key" and the "active XOM identifier".
When data is produced by the program, the abstract ma-
chine automatically tags it with the active XOM identifier.
When data is read, the tag on the data is compared with the
a<;tive XOM identifier. If the comparison succeeds, the read
is allowed, otherwise the read causes an exception. Thus, no
principal can access the data of another principal—the tags
create the compartments that provide the isolation required
for security.

In addition to protecting the data, the abstract machine
provides two instructions: enter.xom and exiLxom. XOM
code is preceded by an enter.xom instruction, where the

source register holds the starting memory address of the en-
crypted session key for this XOM code. The instruction
indicates to the XOM machine that all following code be-
longs to a principal associated with the session key. The
machine checks to see if the session key has already been
decoded. If the session key is already in the table, it sets
the active identifier to that entry and starts to fetch XOM
code. If no entries in the session key table match, the ma-
chine chooses a free entry, sets the active identifier to this
entry, runs the asymmetric decryption algorithm on the key
and then enters the key pair in the table before fetching the
first XOM instruction.

While in XOM mode, all instructions are decrypted us-
ing the session key before they are placed in the instruction
stream for execution. Other than decrypting the instruc-
tions and tagging the data, the machine operates like a con-
ventional machine. There are two kinds of events that will
cause the active identifier to change. The normal event is
the execution of an exiLxom instruction. This instruction
changes the active identifier back to null, and the machine
stops decrypting instructions. The "abnormal" event occurs
when a trap or interrupt is taken. In this case, an implicit
exit-xom instruction is executed before the instructions from
the handler are executed.

To complete the abstract machine we need two addition-
al instructions to allow communication between principals.
This communication is provided by the mvJo-nuU and
mv-from-null instructions. These instructions allow a con-
trolled way to change the tags associated with a piece of
data. The rnvJo-null instruction takes data that is tagged
with the active XOM identifier and changes the tag on it to
the null principal. After this instruction is executed, access
to the data by the original principal results in an excep-
tion. Executing this instruction on data that is not original-
ly tagged with the currently executing principal also results
in an exception. The mt;_/rom.nu/nnstruction changes data
tagged by the null principal to the active XOM tag. Once
again data has to be originally tagged with null before this
instruction can be executed.

These instructions and the semantics of tagging guarantee
that when a principal reads data it will only get values that
were either created by itself or explicitly brought into its
compartment. The simplicity of this compartment-based
protection method appeals to us—the basic tag approach
has no special cases and does not depend on the specifics of
the processor execution model.

In summary, the abstract machine described thus far pro-
vides the following four mechanisms.

1. A scheme to decrypt symmetric keys using the private
half of a public key pair.

2. Facilities for decoding the program code using a de-
crypted session key.

3. Instructions for entering and exiting XOM mode, with
traps and interrupts causing an implicit exit from
XOM mode.

4. A data tagging scheme that prevents principals from
accessing data belonging to other principals.

These mechanisms would be sufficient if either external
memory was secure, or we did not need to use it. Since we
acknowledge that memory can be probed, and that it will

be necessary to use external memory in most c£ises, we will
need to deal with its insecurity. We again use cryptography,
this time to extend the compartments to external memory.

2.1 External Memory
To extend compartments to external memory, we encrypt

the tagged data using the appropriate session key when it
leaves the confines of the abstract machine. Unfortunately,
this is not sufficient to provide the same guarantees that the
internal tags provide—we still need a mechanism to prevent
access to data that was tampered with while it was in mem-
ory. To allow the machine to check the ownership as well as
protect the data, a secure hash is associated with all values
stored in memory. If an external agent tampers with the
data, then the hash will not match and the instruction will
cause an exception.

To support the needed functionality, a XOM machine pro-
vides two pairs of instructions to move data between exter-
nal memory and the machine: storesecure/loadsecure and
store-from-null/ load-frorri-null.

The store-secure and loadsecure act like normal load and
store instructions for the XOM process. They axe used by
the currently executing XOM program to move data be-
tween memory and registers that are in the active compart-
ment. Thus, if the register named in a storesecure is tagged
with an identifier other than the active one, the instruction
raises an exception. Similarly, if the load-secure memory da-
ta hash does not match the data the instruction will cause
an exception. The storesecure instruction encrypts data
with the active session key and creates a hash to check for
ownership. The loadsecure instruction takes a destination
register and memory location as arguments. It decrypts the
contents of memory using the active session key, verifies the
hash, loads the decrypted value into the register and changes
the tag on the register to the active identifier. If there is a
mismatch in the hash, the instruction will cause an excep-
tion.

The store-from-null and load-frorri-null instructions are
additional instructions to make it possible for a XOM pro-
gram to read and write data in the null compartment. These
instructions neither encrypt or decrypt their data, nor have
secure hashes associated with them. They behave just as
load and store instruction do on a conventional processor.
In a XOM machine these instructions do not change the
ownership of the data, and so the data to be stored on a
store-from-null instruction must be tagged with the null
identifier, and the data left by a loadfrom-null is tagged
with the null identifier. Again, a store-from-null on a regis-
ter that is not tagged with null results in an exception.

As we will describe in the implementation section, to re-
duce both the time and bit overhead of memory operations,
the encryption and hash generation axe pushed through the
memory hierarchy, so it is only done when the data leaves the
processor and enters insecure memory. The on-chip caches
use tags, just like the registers, to provide access control.

2.2 Supporting Interrupts
To allow XOM code to be interrupted and restarted we

need to remove any dependency between the operating sys-
tem's resource management responsibilities and compart-
ment security. On an interrupt, an untrusted operating sys-
tem must be allowed to save the register state of a XOM
process without being able to interpret or leak the contents

of the registers. The current machine does not have this ca-
pability, since a process can access protected registers only
if the contents of the register is in its compartment. We
need to add two more instructions—the savesecure and re-
storesecure instructions—to provide this ability.

The savesecure and restoresecure instructions are used
by the currently executing program to move data that it
does not own and does not belong to the null principal. The
savesecure instruction takes the contents of a register and
creates an encapsulated version of this data that another
principal can move but cannot manipulate. It first encrypts
the register contents with the key of the register owner, and
then calculates a hash that includes the identity of the regis-
ter. It places the encrypted data, hash, and the XOM iden-
tifier into a set of special registers, which axe now owned by
the currently active session. This data can then be stored
to memory if needed.

The restoresecure instruction is the inverse of the savese-
cure operation and it is used to restore the data back to the
same register. The instruction uses the special registers that
hold the encrypted data, hash, and destination key identifi-
er. It uses the destination key to decrypt the data and check
the hash. If the hash matches both the decrypted data and
destination register, the decrypted data is written into the
destination register and the tag is set to the destination key
identifier. In this way, we ensure that the register contents
axe not altered and that the values are restored back to the
same register from which they were saved.

The savesecure and restoresecure instructions package
up protected data, allowing another principal to move the
data around without allowing them to tamper with it. This
provides an operating system the means to schedule XOM
processes without violating the security of our compart-
ments. We describe the implementation of these functions
in more detail in Section 4.

3. SECURITY ISSUES
Any system may be the target of a wide range of security

attacks. While the ultimate attack is one that directly caus-
es the secrets to be revealed, it is more often the case that
several weaker attacks are combined to achieve the same
goal. To this end, an adversary may try to manipulate the
target in such a way as to leak information about the hid-
den secret. With this additional information, an adversary
can constrain her seaxch space and eventually mount an ex-
haustive search. Since we expect our model to work in the
presence of untrusted external memory, we must assume
that an adversary will tamper with the values stored in mem-
ory. We first discuss three potential attacks that can arise
in this context: spoofing, spUcing, and replay, and then look
at other ways a XOM machine can leak information.

A spoofing attack is where an adversary generates data
and tries to pass it off as valid data. Such an attack against
XOM would involve replacing values in memory, including
instructions or data values, with spurious ciphertext.' If the
XOM machine blindly accepted these spurious values and
operated on them, it may alter the behavior of the XOM
program in such a way that information about the copy-
protected code is revealed. The usual cryptographic solution
to a spoofing attack is to employ a Message Authentication

^Ciphertext is the term Eissigned to encrypted data. Like-
wise, plaintext is any data that is unencrypted.

Code (MAC) [24, 13, 15], A MAC is a koyod, one-way ha-sh
of the message. The hash is easily reproduced to check for
authenticity, but it is difficult to find another message that
hashes to the same value. Thus, the store,secure in.struc-
tion generates a MAC of the encrypted data and saves it
along with the data in external memory as mentioned ear-
lier. When the value is read back in, via the loadsecure in-
struction, the data is checked with its accompanying MAC
for authenticity. Execution is halted if the MAC cannot be
verified. Since the adversary cannot generate a valid MAC,
spoofing values in memory is impossible.

Splicing attacks involve taking valid fragments of valid ci-
phertext (in our case, portions of XOM code or data) and
reordering or duplicating them at different locations. The
intended goal of this type of attack is also to trick the ma-
chine into executing the modified XOM program in the hope
that it will reveal some secret about the original XOM pro-
gram.

To prevent this type of attack, the MAC used in the ab-
stract machine includes a position dependent attribute with-
in it. In the case of data stored in memory and instructions,
we include the virtual address of the memory location. Like-
wise, in the case of register data, we include the register
number. During both instruction and data fetch from ex-
ternal memory, the MAC of the fetched data is checked to
ensure that the data has not been tampered with. If the
MAC does not match, the machine will take an exception
and the XOM application will halt.

The XOM architecture also addresses replay attacks where
the adversary records previous valid ciphertexts and
re-inputs them to the XOM machine at a later time. Since
the code is static, this approach only attacks the data val-
ues. The ability to interrupt the XOM process gives an ad-
versary access to many valid register ciphertexts. Likewise,
the ability to watch the memory traffic allows the adversary
to replay memory values. To remedy this problem, we as-
sociate a mutating register with each XOM identifier and
place this in the session key table. This register is updated
each time the XOM process is interrupted. Including this
value in the hash used for the savesecure and restore-secure
commands prevents the register values from being replayed,
since values from a previous interrupt will not match the
current mutating register value.^ Safe register values can
then be used to protect critical memory data.

Aside from guarding against spoofing, splicing and replay
attacks, our architecture also guarantees that XOM code
intended for one machine may not be executed on another
machine with a different key. Thus, the software is copy-
resistant. We accomplish this without trusting any other
entity other than the XOM machine itself. In particular, we
do not rely on the security of the operating system or the
memory.

However, there are also some limitations of this execution
model. Since the abstract machine is trusted, a buggy, ma-
licious, or a compromised abstract machine can reveal the
secrets of a XOM program, allowing it to be copied or mod-
ified. We believe that the simplicity of the internal tagging
mechanism will reduce the probability of errors, but it is still

A side effect of this is that the XOM machine cannot dif-
ferentiate between a fork, which is a legitimate case where
memory values must be duplicated, and a real replay at-
tack. Our current research is looking at methods that allow
applications to fork, while still preventing replay attacks.

an issue. Furthermore, we assume that the data on-chip
is secure, although there are techniques that allow one to
probe a chip using internal scan chains, power analysis [6, 14]
or various other more exotic techniques [21]. In a XOM pro-
cessor this can be solved by disabling internal scan chains
and other test hardware, or forcing them obey the same tag
access rules as the rest of the hardware, and packaging chips
in a way that makes probing impossible.

If two applications wish to share data, they must negoti-
ate a common shared key through standard cryptographic
methods. Two XOM programs may not share a session key.
Sharing a key would enable an adversary to splice instruc-
tions from the two progreims in unauthorized ways.

Finally, our model also leaks information at the external
memory interface. An adversary can watch the memory
traffic and determine an address trace of the XOM pro-
gram. The coarseness of this address trace will vary with
the amount of caching used in an implementation of the ab-
stract machine. Whether this information leakage can be
effectively exploited is currently an open question.

4. IMPLEMENTATION OF XOM
There are many hardware and software tradeoffs in imple-

menting a processor capable of executing XOM code. This
section initially describes a modest amount of hardware in
conjunction with a virtual machine monitor [12] that can
be used to run simple XOM code. By simple XOM code,
we mean code that cannot be interrupted and does not
store trusted data in external memory. Next, we augment
this hardware to implement a machine that efficiently sup-
ports the full XOM execution model, which handles external
memory and interrupts.

4.1 A Simple XOM Machine
A simplified abstract machine that does not support ex-

ternal memory or interrupts can be used to create copy-
protected code. Since the XOM code in this model is quite
restricted, we propose a software model where most of the
application runs unencrypted and only certain sensitive sec-
tions of the code are encrypted and run in XOM mode. In
this scenario, the XOM sections form opaque functions that
the programmer uses to secure the application. These func-
tions have access to the session key, which is used to encrypt
or decrypt required data and instructions. Both for security
and simplicity, the XOM code segments are not restartable
if interrupted. If an exception does occur, all the data com-
puted in the XOM code segment is lost, and there is no
mechanism to undo any actions the XOM code may have
performed. Temporary data storage for the XOM code could
provided by a tagged on-chip memory.

There are several possibilities for selecting which parts
of the application can be made into these opaque functions.
The ideal candidate for XOM is a piece of code that is short,
idempotent, but critical to the usefulness or operation of the
overall code. For example, in the case of a streaming media
decoder, short, periodic sections of the media stream could
be encrypted, and the XOM functions would decrypt the
data while maintaining the secrecy of the key.

4.2 Creating a Simple XOM Machine
This simple XOM machine can be implemented almost

completely by running a special XOM Virtual Machine Mon-
itor (called XVMM) on a slightly modified CPU. The main

Main MemoryD

L2 CacheD

XVMMD

LI CacheD
miss trapD

XOM AsymmetricD
Decryption MicrocodeC

And KeyD

[£
L1 InstructionD

CachieD

DecodeD

Path toD
writeD

decryptedP
instructionsD

into L1D
InstructionD

CacheD

Private MemoryC

Register FileD

I

LI Data CacheD

DatapathD

ProtectionD
BoundaryD

XOM ValidD
BitsD

Figure 1: The Simple XOM Architecture

haxdwaxe additions to the CPU include special microcode
that stores the private key, private on-chip memory,
the ability to trap on instruction cache misses and a spe-
cial privileged mode under which the XVMM runs.

A block diagram illustrating the additional architectural
blocks required to implement the simple XVMM is shown
in Figure 1. The modifications required on a standard pro-
cessor are outlined in bold.

The actual XVMM could be implemented in either soft-
ware or in microcode. Software implementations must be
authenticated by a secure booting mechanism such as those
described in the literature [2, 26, 17]. Either way, the
XVMM executes as a trusted, authorized, and privileged
program. There are special hardware facilities that only the
XVMM can access, such as the private key, secure on-chip
memory and the revectoring of certain interrupts. This is
why the XVMM must run at a privilege level higher than
that of the untrusted operating system.

For the simple execution model, the XVMM must sup-
port: decryption of the instruction stream, tagged data
within the machine, and the four instructions enter^xom,
exit-xom, mv-tojnull and mv-from-null.

Decryption of Instructions
Decrypting the instruction stream is straightforward to
achieve if the CPU vectors I-cache misses to the XVMM,
which can then decrypt the code and insert the decrypted
instructions into the cache. I-cache miss handling in soft-
ware is not typically available on modern processors, but
does not require much additional hardware. In addition to
the input to the exception logic, all the machine needs is a
mechanism that allows the processor to write data into the
I-cache. The I-miss trap handler would fetch the requested
cache line, decrypt it and check the hash, and then write

this data into the I-cache. Depending on the desired perfor-
mance, decryption of the instructions can be done entirely in
software by the XVMM or with special-purpose hardware.

Tagging Data

Data in the machine (I-cache and registers) can be tagged
with minimal changes to the hardware. The obvious solution
is to directly add a hardware tag to each unit of hardware
storage that requires one. However, this additional hardware
is not strictly needed for the simple XOM machine. Instead
of explicitly adding hardware, the XVMM could simply re-
move the tagged data from the machine on every (implicit
or explicit) exit.xom instruction. For the simple machine
both the machine registers and the I-cache would be flushed,
since no XOM state is needed after the XOM code finishes.
In this model, a shadow register file is needed to hold pub-
lic data required for the special XOM instructions such as
mv-to-null and mv-from-null.

The limitation of this model is that the machine will not
cause an exception if the data has the wrong XOM tag—it
only prevents the protected data from being read. If XOM
code cannot be interrupted, this level of protection is suf-
ficient, because interrupts cause an implicit exit-xom. To
ensure that protection violations are trapped requires that
register state be extended to include a valid bit. If the valid
bit is cleared, the contents of the register are invalid, and a
read access to a register causes a trap. Register reads pro-
ceed as normal if the valid bit is set. A write to a register
always succeeds and sets the valid bit. The valid bit can
be explicitly tested as well as cleared by the XVMM, and
it indicates that the requested data is owned by the active
XOM process.

In addition to the registers, the mEichine needs to contain
private memory for the XVMM to use. The XVMM memory

needs to be protected so it can only be accessed by the
monitor, while any storage for the private data of XOM
applications can be cleared on an exit-xom.

Private Key

The last addition to the hardware is a private key that could
be contained in microcode of the processor. This code im-
plements the asymmetric cipher and outputs the symmetric
key needed for XOM execution. Because the private key
exists as microcode, it may be updated by a secure XOM
program. In this way, an authorized party could create sev-
eral chips with the same private key. This would be required
for processor upgrades or in the implementation of a shared
memory multiprocessor.

The XOM Virtual Machine Monitor (XVMM)

The XVMM implements the special XOM instructions and
provides data tagging using the facilities of the hardware
described above.

If the registers of the machine are not explicitly tagged,
it organizes a portion of the private memory as a set of
tagged registers. For each general purpose register in the
CPU, private memory has a corresponding shadow register
of the same size and an associated XOM identifier tag of a
suitable length. The basic idea is that the combination of
a CPU register with its single valid bit, the corresponding
shadow register and tag implemented in software is func-
tionally equivalent to having CPU registers with long tags.

A separate region of the private memory holds a session
key table containing decrypted session keys for the various
XOM identifiers. The XOM tags used in the shadow regis-
ters are indices into this key table. The XVMM keeps track
of the index of the currently executing XOM session. Index
zero refers to the null tag, which refers to the untrustcd null
principal.

The XVMM implements the four special XOM mode in-
structions as follows.

enter.xom: The XVMM loads the session key of the
XOM code into the session key table if not already present.
The XVMM maintains a 128 bit cryptographic hash of the
encrypted session key along with its decrypted form. The
presence check is performed using this hash value. A failed
check entails an asymmetric key decryption operation to
generate the session key. Shadow registers whose tags match
that of the XOM session jire copied into their corresponding
CPU registers, which are then marked valid. All other CPU
registers are marked invalid.

The XVMM registers a handler for cache miss events so
that I-cache misses incurred during the execution of XOM
code will be correctly vectored to it. Similarly, it also revec-
tors all CPU exceptions and interrupts to itself so that it
can do an implicit exit-xom instruction whenever there is an
interrupt or exception.

exit-Xom: The XVMM unregisters the handler for cache
miss faults and restores handlers for all CPU interrupts and
exceptions. It copies all shadow registers whose tags are
null into the corresponding CPU register. All other CPU
registers are marked invalid. If this exitjcom is a result of
an interrupt, the mutating register associated with the in-
terrupted principal is updated.

mv-to-nuli. The XVMM checks that the CPU register
has the valid bit set. If not, it raises an exception. Oth-
erwise, it moves the contents of the CPU register into the

corresponding shadow register, tags the shadow register as
null, and marks the CPU register as invalid.

mv.from.nuli. The XVMM checks to see if the CPU reg-
ister is valid. If it is, then it raises an exception. Otherwise
it moves the contents of the shadow register into the CPU
register and sets the valid bit.

4.3 Full XOM Machine
To extend this implementation to support the full XOM

machine requires support for secure loads and stores to the
external memory, as well as saves and restores of protected
registers. The hardware consists of tag bits in the on-chip
cax^he to store the XOM identifier for XOM data. We first
describe what is needed to support context switches, and
then look at the more complex problem of support secure
external memory.

If XOM code is interruptible, an adversary may mount
a spoofing attack, by changing values while the code is in-
terrupted. To guard against this, the XOM machine must
raise an exception if a principal reads data from a different
XOM session. This would detect the case where an adver-
sary has overwritten XOM data with spoofed data. Thus,
if a full XOM tag is not used, registers need to be protect-
ed minimally by a valid bit. In addition a mutating key is
associated with each session key to protect against replay
attar,ks. The XVMM miist change this key each time the
XOM process is interrupted. The only other support need-
ed is for XVMM code to implement the savesecure and
restoresecure instructions.

aave^secure: This instruction takes one source register
and uses a set of special registers as destinations. First, the
register value is encrypted using the session key correspond-
ing to the register tag and is placed in the first destination
register. Next, a 128 bit hash is calculated based on the
register contents, the mutating key, and the register num-
ber. We assume that our machine has 64 bit registers and
so the hash is placed in the next two registers. Finally, the
XOM register tag is stored in the fourth register. Thus, we
need four special registers to support this operation. The
destination registers are all tagged with the identifier of the
principal that called savesecure. The calling principal is
now firee to save these values as it would any other data it
owns.

restoresecure: This instruction is simply the reverse of
savesecure. It takes a destination register as an argument,
and reads the contents of the four special registers used in
savesecure to determine the value to place in the destination
register. The XOM identifier in the fourth register is used to
decrypt the data in the first register. This data, along with
the register number of the destination register, is then used
to regenerate the hash, which is compared with the contents
of the second and third registers. If the hash matches, the
decoded data is placed in the destination register, and its
XOM tag is set to the value in the fourth source register.

Supporting secure memory will require the encryption and
decryption of data that is loaded or stored. As Section 6 will
show, even with additional hardware this operation is not
cheap. For performance reasons we want to cache the results
of these operations as much as possible, which drives us to
move the on-chip caches into the protected XOM machine.
With this arrangement the machine only enciphers data that
leaves the chip. Thus, the protection boundary is expanded
to include the CEiches as shown in Figure 2.

L1 InstructtonD
CacheD

XOMD
IdentmerQ

TagsD

Private MemoryC

Register Filed

LI Data OacheD

XOMD
MentmerD

TagsO

DatapattiD

XOMD
IdentltlerD

TagsD

Figure 2: The Full XOM Architecture

Adding the caches to the protected XOM machine does
cause some complications since we do not want the over-
heads of adding XOM tags per word, or generating a hash
for each memory word. Instead, we want to tag and hash
larger blocks of data.

We protect data in the caches by adding a tag for a XOM
identifier to each cache line, and adding a valid bit per word.
When a line is fetched as a result of a secure operation, the
contents of that line and its hash are decrypted and com-
pared. If the hash check succeeds, the tag for that line is
updated to the active XOM identifier, the data is written
into the line, and all the valid bits are set. The more in-
teresting case is what happens when the hash check fails.
In this case we still set the fine's tag to the active XOM
identifier, but we clear all the valid bits. An exception oc-
curs either if a loadsecure reads an invalid word, or if it
reads a line whose tag does not match the active identifier.
Note that even though there is a valid bit per word, data is
encrypted or decrypted on a per cache line baisis.

The use of valid bits allows a XOM process to perform a
store-secure into a line that currently holds old data from
another compartment. The store will first cause the line to
be fetched into the cache. The hash will not match, since
it is for a different XOM session, and all the data will be
marked invalid. The store will set the valid bit for the word
written—so as long as the processor only reads data it has
already written, no exception will occur. If the requested
line for the store is already in the cache, but the tags do not
match, a simileir operation occurs. Writing into a cache line
always updates the tag to the active XOM identifier. If this
changes the tag on the line, all the valid bits are cleared,
except for the data word that was updated. Note that the
clearing of valid bits is conservative—while it might lose
valid data if two XOM principals share a cache line, it will

never allow valid XOM data to leak out of its compartment.
To prevent data loss, the operating system must prohibit two
XOM applications from writing data into the S£mie physical
page.

The XOM tag and valid bits allow us to push the encryp-
tion/decryption operations to operate only on second-level
cache misses, and guarantees that each cache line has only
one active XOM identifier. Thus, the MAC can be done on
the whole cache line rather than each word, which greatly
reduces the memory overhead needed for storing the MAC.
For example, a 128 byte cache line could easily accommo-
date a 128 bit hash using the extra bits normally allocated
for ECC. The hash will still be able to catch almost all mem-
ory errors, but will not be able correct for single bit errors.
The added complexity is that the valid bits must be stored
along with the data to allow the cache to flush a partially
valid Hne. When a cache line is loaded, the hash is checked
and if the hash is correct, the valid bits are restored.

The full XOM model requires slightly more extra hard-
ware than the simple model, but it is still relatively modest
(except for the needed symmetric cipher acceleration that is
described in the next section). It consists of adding tag and
valid bits to the on-chip caches, the extra control logic need-
ed to deal with these bits, and any cryptographic hardware.
The need and cost of this hardware is described next.

5. SPECIALIZED HARDWARE
We note that most XOM operations are not performance

critical. Asymmetric operations only occur when a new
XOM program is started. Similarly, register saves and re-
stores are infrequent, and only occur on interrupts and con-
text switches. For instance, a study [18] shows that com-
mercial appUcations have a mean execution length between

10,000 and 49,000 instructions betwnon ea^h context switch.
With hardware support for the XOM identifier, the main
performance issue is the implementation of secure external
memory. The encryption, decryption, and MAC compu-
tation of cache lines appears on the critical path for each
second-level cache miss. Supporting the full XOM model is
very expensive without hardware acceleration of these oper-
ations.

The most commonly used symmetric cipher today is
DES [20]. DES works by iterating the plaintext through 16
rounds of computation consisting of two XOR operations,
a table lookup and bit permutations. Because of its short
key length, it is usually run three times on a data block to
create the Triple DES cipher [22, 25]. However, there are
efforts underway to replace DES with newer algorithms that
are both more efficient and more secure. Among the most
promising are the AES [27] candidates Rijndael [7] and Ser-
pent [3]. Rijndael is a block cipher that only has 10 rounds
of calculation while Serpent has 32 rounds. A recent study
found that when run on a slightly optimized 1 GHz proces-
sor, Rijndael offers the best performance, encrypting 92.6
MB/s [5]. This translates into approximately 1 byte every
11 cycles. To decrypt a 128 byte second-level cache line
would require 1408 cycles, which is too high an overhead to
pay for every second-level cache miss or write-back.

We can mitigate this cost by adding special hardware to
perform the symmetric cryptography. The maximum rate
at which this hardware must be able to decrypt and encrypt
data is dictated by the peak bandwidth of the second-level
cache to memory interface. As an example, the next genera-
tion x86 CPU, the Intel "Willamette" [16], will have a peak
memory bandwidth of 3.2 GB/s and a clock speed ranging
from 1.2 GHz to over 1.6 GHz. With a 64 bit memory bus
this corresponds to data being placed on the bus every 3-
4 processor cycles, and would require a cryptographic unit
capable of keeping up with this rate.

We will use Triple DES as an example of a symmetric
block cipher that can be implemented as specialized hard-
ware, even though faster ciphers are available. Triple DES
takes a 64 bit block and performs 48 rounds of transfor-
mations on it. We believe that it is possible to build a
DES implementation that can compute two rounds per cy-
cle, but we conservatively assume that only one round can
be computed [8]. Thus, it takes 48 cycles to decrypt a 64 bit
block. Because each round is essentially identical to every
other round, DES can easily be pipelined. A fully pipelined
unit would require 48 DES stages and could produce a 64
bit output each cycle. Since this is 3-4 times the required
rate, one only needs a DES unit with 16 pipeline stages with
each stage performing three rounds iteratively. Becau.se each
stage consists only of XOR gates and bit swizzles, the area
of such a unit is dominated by the size of the tables. The
tables are 6 bit lookups producing a fixed 4 bit output, and
each pipeline stage requires 16 such tables. Thus, in total
256 such tables are required. Since these tables are simply
ROM's they can be implemented in a very dense fashion.

We also need to create a MAC for each cache line. Unfor-
tunately these secure hash functions are also expensive to
compute. As an example, we will consider an HMAC [15]
implementation using MD5 [13]. MD5 is a one way hash
function that takes 64 rounds, each performing a non-linear
operations followed by four bitwise additions and a barrel
shift and produces a 128 bit hash. This computation is com-

parable to encrypting the data. While we could add more
custom hardware for the hash (which would be smaller than
the symmetric cryptography hardware since it does not need
to be pipelined) there is a simpler solution.

We can exploit the fact that a MAC provides much more
fimctionality then we require. A MAC is able to provide au-
thentication for messages that are not encrypted, by using
a hash that is difficult to reverse. Since the cache fines are
encrypted, we are free to use a reversible hash for redundan-
cy. Because the adversary does not know the session key,
she cannot generate a valid hash of any message she creates.
Thus, we may pick a much faster hash (such as CRC) and
append that to the Cciche line before encrypting with the
session key. A CRC hash may be generated in parallel with
the decryption, and thus has no additional cost.

The final issue deals with the latency for verifying the hash
value is correct. Since the hash depends on the entire line,
a simple implementation would delay returning any data to
the processor until the entire line was fetch onto the pro-
cessor. For the Triple DES example this would double the
overhead from 48 cycles for the first word, to over 100 cycles,
since it takes 3*18 cycles to fetch all the data in a 128 byte -1-
128 bit cache line. To eliminate this additional overhead we
can return the requested word first, and speculatively start
the processor when the requested word is decoded. If the
hash docs not verify the XOM thread will abort, so we do
not need to worry about being able to redo the load. All we
need to ensure is that any operations that allow information
to leak out of the machine such as stores cause the machine
to stall until the check is complete.

6. PERFORMANCE IMPLICATIONS
We sec from the previous section that most of the perfor-

mance cost of XOM will show up as an additional stage in
the memory pipeline. We can model this cost as increased
memory access time. There is increased latency because the
XOM stage is serialized with the bus, and the additional en-
cryption or decryption takes extra cycles to complete. It is
unlikely that an out-of-order processor can hide this latency
since the memory access time is already high. To the first
order, we can compute the slow down factor as follows:

slow down = co^P + L2,Tniss x {XOMJat + memdat)
comp + L2jmiss x memdat

XOMdat
H- X % of iime siatled on memoTy

memdat

Where comp is the amount of time the CPU is not stalled
on a memory access, L2-miss is the number of second-level
misses, XOMdat is the latency of a XOM symmetric unit
and memdat is the latency of a memory access. As we can
see, the two factors that affect the performance is the aver-
age proportion of time the CPU is stalled on memory per
instruction and the ratio of the latency of the XOM sym-
metric units to the memory access time. The memory stall
time is dependent on the number of second-level misses,
which depends on cache size, associativity, and application.
The XOM overhead is clearly most important to applica-
tions that are already dominated by memory latency (high
second-level miss rates). For these applications the slow
down for running in a XOM application will simply be one
plus the ratio of the XOM latency to the memory latency.
This is encouraging, since the XOM delay should scale with

processor performance, while the memory access time is scal-
ing more slowly. For the "Willamette" processor example,
the memory delay is over 100 cycles, so for a completely
memory bound appHcation the slow down will be less than
50% for a 48 cycle Triple DES implementation.

7. SUMMARY
Supporting code that can be executed, but not copied,

read, or changed is a challenging problem when one con-
siders that an adversary may modify the operating system
running the code, the data stored in memory, or the machine
the code runs on. This paper examines the implementation
of XOM, a system that protects an application's code and
data using cryptographic techniques, and restricts the ma-
chine on which this code is allowed to run. Prom a security
standpoint, the critical issue is to prevent information from
leaking out of a XOM apphcation. We accompUsh this by
placing each application in its own compartment implement-
ing a policy that causes the process to halt if it tries to read
data that is not in its compartment.

Implementing the compartments for on-chip data is rela-
tively straight-forward. We tag the data storage locations
with the compairtment that created it, and cause an excep-
tion if the data being read does not match the active com-
partment. Protecting off-chip data is more complex. En-
cryption alone only prevents the data from being read, it
does not prevent it from being changed. Providing a hash
with each piece of data allows us to guard against spoof-
ing, splicing, and even replay attacks. By associating the
hash with l2irge cache lines, we can accomplish this protec-
tion with small memory overhead—using the bits currently
allocated for ECC.

The performance and hardwcire cost for this protection
is surprisingly modest. The essential pieces of hardware to
be added are the tags on the on-chip storage, the logic as-
sociated with the tags to check for access violations, and
the hsirdware support for the symmetric encryption of the
memory traffic. The rest of the XOM functionality is not
performance criticcil and can easily be implemented in soft-
WEire, either in a virtual maxihine monitor, or in microcode.
If a program could be secured by using only small XOM
functions, then very little new hardware is needed at all.

XOM allows one to create a machine that prevents users
from copying or modifying code, but raises a number of se-
curity and privacy issues. These issues continue to be inter-
esting areas of research.

Acknowledgments
We would Uke to thank Robert Bosch and Kinshuk Govil for
their help in setting up the simulation environment which
we used to help us better understand the performance issues
with XOM. This research was supported in part by DARPA
contract MDA904-98-C-A933.

8. REFERENCES
[1] Business Software Alliance, 2000.

http: //www. bsa. org.
[2] The Trusted Computing Platform AUicance, 2000.

http://www.trustedpc.com.
[3] R. Anderson, E. Biham, and L. Knudsen. Serpent: A

proposal for the advanced encryption standard.

Technical report. National Institute of Standards and
Technology (NIST), March 2000. Available at
http://csrc.nist.gov/encryption/aes/rou-
nd2/r2algs.htm.

[4] D. Boneh, D. Lie, P. Lincoln, J. Mitchell, and
M. Mitchell. Hardware support for tamper-resistant
and copy-resistant software. Technical Report
CS-TN-00-97, Stanford University Computer Science,
2000.

[5] J. Burke, J. McDonald, and T. Austin. Architectural
support for fast symmetric-key cryptography. In
Proceedings of the 9th International Conference
Architectural Support for Programming Languages and
Operating Systems, 2000.

[6] S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards
sound approaches to counteract power analysis
attacks. In Proceedings of CRYPTO'99: 19th Annual
International Cryptology Conference, volume 1666,
pages 398-412, 1999.

[7] J. Daemen and V. Rijmen. AES proposal: Rijndael.
Technical report, National Institute of Standards and
Technology (NIST), March 2000. Available at
http://csrc.nist.gov/encryption/aes/rou-
nd2/r2algs.htm.

[8] H. Eberle and C. Thacker. A IGbit/second GaAs DES
chip. In Proceedings of the IEEE Custom Integrated
Circuits Conference, pages 19.7.1-19.7.4, May 1992.

[9] Wave Corporation Embassy Technology, 2000.
http://www.wave.com.

[10] T. Gilmont, J.-D. Legat, and J.-J. Quisquater. An
architecture of security management unit for safe
hosting of multiple agents. In Proceedings of the
International Workshop on Intelligent
Communications and Multimedia Terminals, pages
79-82, November 1998.

[11] T. Gilmont, J.-D. Legat, and J.-J. Quisquater.
Hardware security for software privacy support.
Electronics Letters, 35(24):2096-2097, November 1999.

[12] R.P. Goldberg. Survey of virtual machine research.
IEEE Computer Magazine, 7(6):35^5, June 1974.

[13] B. Kaliski Jr. and M. Robshaw. Message
authentication with MD5. CryptoBytes, l(l):5-8,
1995.

[14] P. Kocher, J. Jaffe, and B. Jun. Differential power
analysis. In Proceedings of CRYPTO'99: 19th Annual
International Cryptology Conference, volume 1666,
pages 388-397, 1999.

[15] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
Keyed-hashing for message authentication.
http://www.ietf.org/rfc/rfc2104.txt, February
1997.

[16] K. Krewell. Quicktake: Willamette revealed. Technical
report, Calmers Microprocessor, February 2000.
Available at www. MPRonline. com.

[17] B. Lampson, M. Abadi, M. Burrows, and E. Wobber.
Authenticaton in distributed systems: Theory and
practice. In Proceedings of the 13th ACM Symposium
on Operating Systems, volume 10, pages 265-310,
1992.

[18] A. Maynard, C. Donnelly, and B. Olszewski.
Contrasting characteristics and cache performance of
technical and multi-user commercial workloads. In

Proceedings of the 6th International Conference
Architectural Support for Programming Languages and
Operating Systems, pages 145-156, 1994.

[19] A.J. Mcnzies, P.C. van Oorschot, and S.A. Vanstonc.
Handbook of Applied Cryptography. CRC Press, 1997.

[20] National Bureau of Standards. NBS PIPS PUB 46,
"Data Encryption Standard". National Bureau of
Standards, U.S. Department of Commerce, January
1977.

[21] S. Polonsky, D. Knebel, P. Sanda, M. McManus,
W. Huott, A. Pelella, D. Manzer, S. Steen, S. Wilson,
and Y.Chan. Non-invasive timing analysis of IBM G6
microprocessor LI cache using backside time-resolved
hot electron luminescence. In Proceedings of the IEEE
International Solid-state Circuits Conference, pages
222-224, 2000.

[22] ANSI X9.17 (Revised). American national standard
for financial institution key management (wholesale).
American Bankers Association, 1985.

[23] J. Saltzer and M. Schroeder. The protection of
information in computer systems. IEEE.
63(9):1278-1308, September 1975.

[24] B. Schneier. Applied Cryptography. John Wiley &
Sons, 2nd edition, 1996.

[25] W. Tuchman. Hellman presents no shortcut solutions
to DES. IEEE Spectrum, 16(7):40-41, July 1979.

[26] J. Tygar and B. Yee. Dyad: A system for using
physically secure coprocessors. Technical Report
CMU-CS-91-140R, Carnegie Mellon University, May
1991.

[27] B. Weeks, M. Bean, T. Rozylowicz, and C. Ficke.
Hardware performance simulations of round 2
advanced encryption standard algorithms. Technical
report. National Security Agency, August 2000.
Available at http://csrc.nist.gov/encry-
ption/aes/round2/r2anlsys.htm.

